Canonical Runge - Kutta - Nyström Methods of Orders 5 and 6

نویسنده

  • ROBERT D. SKEEL
چکیده

In this paper, we construct canonical explicit 5-stage and 7-stage Runge-KuttaNyström methods of orders 5 and 6, respectively, for Hamiltonian dynamical systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit Canonical Methods for Hamiltonian Systems

We consider canonical partitioned Runge-Kutta methods for separable Hamiltonians H = T(ß) + Viq) and canonical Runge-Kutta-Nyström methods for Hamiltonians of the form H = ^pTM~lp + Viq) with M a diagonal matrix. We show that for explicit methods there is great simplification in their structure. Canonical methods of orders one through four are constructed. Numerical experiments indicate the sui...

متن کامل

A New Optimized Runge-Kutta-Nyström Method to Solve Oscillation Problems

In this article, a new Runge-Kutta-Nyström method is derived. The new RKN method has zero phase-lag, zero amplification error and zero first derivative of phase-lag. This method is basically based on the sixth algebraic order Runge-Kutta-Nyström method, which has proposed by Dormand, El-Mikkawy and Prince. Numerical illustrations show that the new proposed method is much efficient as compared w...

متن کامل

Symplectic Runge-Kutta-Nyström Methods with Phase-Lag Oder 8 and Infinity

In this work we consider Symplectic Runge Kutta Nyström methods with five stages. A new fourth algebraic order method with phase-lag order eight is presented. Also the symplectic Runge Kutta Nyström of Calvo and Sanz Serna with five stages and fourth order is modified to produce a phase-fitted method. We apply the new methods on several Hamiltonian systems and on the computation of the eigenval...

متن کامل

On the Parametric Instability Caused by Step Size Variation in Runge-Kutta-Nyström Methods

The parametric instability arising when ordinary differential equations (ODEs) are numerically integrated with Runge-Kutta-Nyström (RKN) methods with varying step sizes is investigated. Perturbation methods are used to quantify the critical step sizes associated with parametric instability. It is shown that there is no parametric instability for linear constant coefficient ODEs integrated with ...

متن کامل

A phase-fitted Runge-Kutta-Nyström method for the numerical solution of initial value problems with oscillating solutions

A new Runge-Kutta-Nyström method, with phase-lag of order infinity, for the integration of second-order periodic initial-value problems is developed in this paper. The new method is based on the Dormand and Prince RungeKutta-Nyström method of algebraic order four[1]. Numerical illustrations indicate that the new method is much more efficient than the classical one.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008